

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 2667-2670

An efficient vanadium-catalyzed bromination reaction

Toshiyuki Moriuchi, Mitsuaki Yamaguchi, Kotaro Kikushima and Toshikazu Hirao*

Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamada-oka, Suita, Osaka 565-0871, Japan

Received 10 October 2006; revised 14 February 2007; accepted 16 February 2007 Available online 20 February 2007

Abstract—An efficient catalytic oxidative bromination of arenes, alkenes, and alkynes in aqueous media was achieved under relatively mild conditions by using NH_4VO_3 catalyst combined with H_2O_2 , HBr, and KBr. Dodecyltrimethylammonium bromide was found to serve as an efficient surfactant to facilitate the NH_4VO_3 -catalyzed bromination in aqueous media. © 2007 Elsevier Ltd. All rights reserved.

Bromination of organic compounds is one of the important synthetic tools in organic syntheses. Classical bromination involves the use of hazardous elemental bromine. To avoid the use of bromine, the development of environmentally harmonic bromination protocols has been focused on.¹ Vanadium haloperoxidases, which are found in marine algae, catalyze the oxidation of halides to the corresponding hypohalous acids in the presence of hydrogen peroxide, permitting halogenation of organic compounds.² Considerable efforts have been devoted to develop efficient bromination systems by using V(V)–H₂O₂.³ More environmentally harmonic catalytic procedure is to be developed. We herein report an environmentally harmonic vanadium-catalyzed bromination reaction in aqueous media.

The catalytic system consists of NH₄VO₃ (0.02 mmol), H₂O₂ (0.40 mmol), HBr (0.40 mmol), and KBr (0.60 mmol).⁴ The oxidative bromination reaction of 1,3,5-trimethoxybenzene (0.20 mmol) was conducted at room temperature with stirring in water (5 mL) for 24 h. For comparison, two-phase (H₂O/CHCl₃) reaction^{3b} was also examined under the similar conditions. The dibromide was produced quantitatively in both H₂O and H₂O/CHCl₃ (Table 1). Anisole similarly underwent the NH₄VO₃-catalyzed bromination in H₂O to give the monobromide and dibromide although only the former derivative was obtained in H₂O/CHCl₃. These findings indicate that the oxidative bromination proceeds smoothly in aqueous media. This catalytic system was successfully applied to the oxidative bromination of alkenes and alkynes. A distinct difference of products was observed between aqueous and two-phase media. In the case of *trans*- β -methylstyrene, the corresponding bromohydrin, which is considered to be derived from the intermediary bromonium ion and H₂O, was obtained as a major product in aqueous media. On the contrary, the two-phase reaction resulted in the formation of the dibromide as a major product. It should be noted that the oxidative bromination of α -methylstyrene in H₂O led to the selective and quantitative formation of the bromohydrin. Furthermore, gram-scale oxidative bromination of α -methylstyrene could be performed in H₂O to afford the bromohydrin selectively in 98% yield. Of interest is that the NH₄VO₃-catalyzed bromination of 1-phenyl-1-propyne in H₂O yielded the α, α -dibromoketone⁵ as a major product, accompanied by a small amount of the dibromoalkene (Scheme 1).

	NH ₄ VO ₃ (10 mol%) H ₂ O ₂ (2.0 eq.) HBr (2.0 eq.) KBr (3.0 eq.)		
Substrate	solvent, Ar, rt, 24 h	->	Bromination Products

Scheme 1. Oxidative bromination of arenes, alkenes, and alkynes.

In the case of cyclohexene, only 5% yield of the corresponding bromohydrin was obtained in H₂O although oxidative bromination reaction proceeded in H₂O/ CHCl₃ to give dibromide, α -bromoketone, and bromohydrin derivatives. The NH₄VO₃-catalyzed bromination of cyclohexanone produced the α -bromoketone derivative in both H₂O and H₂O/CHCl₃. Contrary to

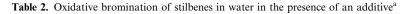
Keywords: Catalytic oxidative bromination; NH₄VO₃ Catalyst; H₂O₂; Aqueous media; Surfactant.

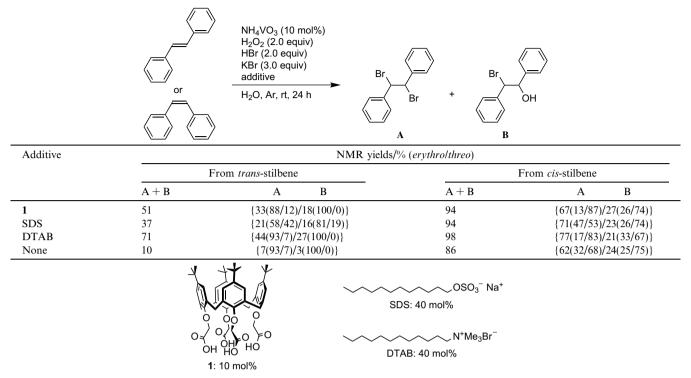
^{*} Corresponding author. Tel.: +81 6 6879 7413; fax: +81 6 6879 7415; e-mail: hirao@chem.eng.osaka-u.ac.jp

^{0040-4039/\$ -} see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2007.02.074

Table 1. Oxidative bromination of arenes, alkenes, and alkyne^a

		NH ₄ VO ₃ (10 mol%) H ₂ O ₂ (2.0 eq.) HBr (2.0 eq.) KBr (3.0 eq.)				
	Subst	solvent, Ar, rt, 24 h	 Bromination Products 			
Substract	Solvent		Products, NMR yield	ls/%		
MeO OMe	H ₂ O H ₂ O/CHCl ₃ (1/1)		MeO Br OMe Br	100 98		
OMe	H ₂ O H ₂ O/CHCl ₃ (1/1)	OMe 48 94 Br		48 0		
	H ₂ O H ₂ O/CHCl ₃ (1/1)	$\overset{\text{Br}}{\underset{\text{Br}}{\overset{7^{\text{t}}}{\underset{64^{\text{t}}}}{\overset{7^{\text{t}}}{\underset{64^{\text{t}}}{\overset{7^{\text{t}}}{\underset{64^{\text{t}}}{\overset{7^{\text{t}}}{\underset{64^{\text{t}}}{\overset{7^{\text{t}}}{\underset{64^{\text{t}}}{\overset{7^{\text{t}}}{\underset{64^{\text{t}}}{\overset{7^{\text{t}}}{\underset{64^{\text{t}}}}{\overset{7^{\text{t}}}{\underset{64^{\text{t}}}{\overset{7^{1}}}}{\overset{7^{\text{t}}}}{\underset{64^{\text{t}}}{\overset{7^{\text{t}}}}{\overset{7^{1}}}{\underset{64^{\text{t}}}}{\overset{7^{1}}}{\underset{64^{\text{t}}}}{\overset{7^{1}}}{\underset{64^{\text{t}}}}{\overset{7^{1}}}{\underset{64^{\text{t}}}}{\overset{7^{1}}}{\underset{64^{t}}}{\overset{7^{1}}{\underset{64^{t}}}{\overset{7^{1}}}}{\overset{7^{1}}}{\underset{64^{t}}}{\overset{7^{1}}}{\overset{7^{1}}{\overset{7^{1}}}}{\overset{7^{1}}}}{\overset{7^{1}}}{\underset{64^{t}}}{\overset{7^{1}}}{\overset{7^{1}}}{\overset{7^{1}}}{\overset{7^{1}}}}{\overset{7^{1}}}{\overset{7^{1}}}{\overset{7^{1}}}{\overset{7^{1}}}{\overset{7^{1}}}}{\overset{7^{1}}}{\overset{7^{1}}}{\overset{7^{1}}}{\overset{7^{1}}}{\overset{7^{1}}}}{\overset{7^{1}}}{\overset{7^{1}}}{\overset{7^{1}}}{\overset{7^{1}}}{\overset{7^{1}}}}{\overset{7^{1}}}{\overset{7^{1}}}}{\overset{7^{1}}}{\overset{7^{1}}{\overset{7^{1}}}}{\overset{7^{1}}}}{\overset{7^{1}}}}{\overset{7^{1}}}{\overset{7^{1}}}{\overset{7^{1}}}{\overset{7^{1}}}{\overset{7^{1}}}}}$	HO Br	75 ^b 0 ^b	Br	10 ^b 26 ^b
	H ₂ O H ₂ O ^c H ₂ O/CHCl ₃ (1/1)	Br Co Br Co 31	Br	100 98 69		
————————————————————————————————————	H ₂ O H ₂ O/CHCl ₃ (1/1)	Br 82		12 81	Br Br	Trace 13
\bigcirc	H ₂ O H ₂ O/CHCl ₃ (1/1)	$ \begin{array}{c} Br \\ Br \\ Br \\ 46 \end{array} $		0 24	OH Br	5 20
	H ₂ O H ₂ O/CHCl ₃ (1/1)		C Br	33 48		
MeOOMe	H ₂ O H ₂ O/CHCl ₃ (1/1)		MeO Br Br 	70 58	0 · · · · · · · · · · ·	


^a The reaction was carried out by using a substrate, 10 mol % of NH_4VO_3 , 2.0 equiv of H_2O_2 , 2.0 equiv of HBr, and 3.0 equiv of KBr in H_2O at room temperature for 24 h.


^b Isolated yield.

^c The reaction was carried out by using 10 mmol of substrate, 1.0 mmol of NH_4VO_3 , 20 mmol of H_2O_2 , 20 mmol of HBr, and 30 mmol of KBr in H_2O at room temperature for 24 h.

the bromination of 1-phenyl-1-propyne, the dibromide was produced as a major product in the case of 1,4-dimethoxy-2-butyne.

Above-mentioned results indicate synthetic efficiency of the present catalytic oxidative bromination system in aqueous media. To optimize the catalytic system, the effect of an additive in aqueous media was studied, as summarized in Table 2. The presence of a surfactant facilitated the bromination of *trans*-stilbene. Dodecyltrimethylammonium bromide (DTAB) exhibited an advantage over **1** and sodium dodecyl sulfate (SDS) in both yield and selectivity, to afford the dibromide and bromohydrin in 44% (*erythro/threo* = 93/7) and 27% yield (*erythro/threo* = 100/0), respectively. On the other hand, the poor yields were obtained in the absence of the additive. The similar effect of DTAB was also observed in the bromination of *cis*-stilbene.

^a The reaction was carried out by using stilbene, 10 mol % of NH_4VO_3 , 2.0 equiv of H_2O_2 , 2.0 equiv of HBr, 3.0 equiv of KBr, and 10 mol % or 40 mol % of an additive in H_2O at room temperature for 24 h.

In conclusion, the present procedure provides an efficient method for the catalytic oxidative bromination in aqueous media. The more efficient bromination was attained in the presence of the cationic surfactant. Studies on the reaction mechanism and synthetic application are now in progress.

Acknowledgments

This work was financially supported in part by a Grantin-Aid for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Science, and Technology, Japan. Thanks are also due to the Analytical Center, Graduate School of Engineering, Osaka University for the use of their facilities.

References and notes

- (a) Srivastava, S. K.; Chauhan, P. M. S.; Bhaduri, A. P. *Chem. Commun.* **1996**, 2679–2680; (b) Clark, J. H.; Ross, J. C.; Macquarrie, D. J.; Barlow, S. J.; Bastock, T. W. *Chem. Commun.* **1997**, 1203–1204; (c) Barhate, N. B.; Gajare, A. S.; Wakharkar, R. D.; Bedekar, A. V. *Tetrahedron Lett.* **1998**, 39, 6349–6350.
- (a) Butler, A. In *Bioinorganic Catalysis*; Reedijk, J., Ed.; Marcel Dekker: New York, 1992; pp 425–445; (b) Sigel, H.; Sigel, A.. In *Metal Ions in Biological Systems*; Marcel Dekker: New York, 1995; Vol. 31; (c) Butler, A.; Walker, J. V. *Chem. Rev.* 1993, 93, 1937–1944; (d) Rehder, D. *Coord. Chem. Rev.* 1999, 182, 297–322; (e) Butler, A. Coord. Chem.

Rev. **1999**, *187*, 17–35; (f) Butler, A.; Carter, J.; Simpson, M. In *Handbook on Metalloproteins*; Bertini, I., Sigel, A., Sigel, H., Eds.; Marcel Dekker: New York, 2001; pp 153– 179; (g) Wever, R.; Hemrika, W. In *Handbook of Metalloproteins*; Messerschmidt, A., Huber, R., Poulos, T., Wieghardt, K., Eds.; Wiley: Chichester, 2001; pp 1417– 1428; (h) Ligtenbarg, A. G. J.; Hage, R.; Feringa, B. L. *Coord. Chem. Rev.* **2003**, *237*, 89–101.

- 3. (a) Bhattacharjee, M. Polyhedron 1992, 11, 2817-2818; (b) Conte, V.; Di Furia, F.; Moro, S. Tetrahedron Lett. 1994, 35, 7429-7432; (c) Dinesh, C. U.; Kumar, R.; Pandey, B.; Kumar, P. J. Chem. Soc., Chem. Commun. 1995, 611-612; (d) ten Brink, H. B.; Tuynman, A.; Dekker, H. L.; Hemrika, W.; Izumi, Y.; Oshiro, T.; Schoemaker, H. E.; Wever, R. Inorg. Chem. 1998, 37, 6780-6784; (e) Bora, U.; Bose, G.; Chaudhuri, M. K.; Dhar, S. S.; Gopinath, R.; Khan, A. T.; Patel, B. K. Org. Lett. 2000, 2, 247-249; (f) Rothenberg, G.; Clark, J. H. Org. Process Res. Dev. 2000, 4, 270-274; (g) Martinez, J. S.; Carroll, G. L.; Tschirret-Guth, R. A.; Altenhoff, G.; Little, R. D.; Butler, A. J. Am. Chem. Soc. 2001, 123, 3289-3294; (h) Carter-Franklin, J. N.; Parrish, J. D.; Tschirret-Guth, R. A.; Little, R. D.; Butler, A. J. Am. Chem. Soc. 2003, 125, 3688-3689; (i) Maurya, M. R.; Saklani, H.; Agarwal, S. Catal. Commun. 2004, 5, 563-568; (j) Greb, M.; Hartung, J.; Köhler, F.; Špehar, K.; Kluge, R.; Csuk, R. Eur. J. Org. Chem. 2004, 3799-3812; (k) Conte, V.; Floris, B.; Galloni, P.; Silvagni, A. Pure Appl. Chem. 2005, 77, 1575-1581; (1) Khan, A. T.; Goswami, P.; Choudhury, L. H. Tetrahedron Lett. 2006, 47, 2751-2754.
- 4. General procedure of the catalytic oxidative bromination: To a stirred mixture of a substrate (0.20 mmol), NH_4VO_3 (2.34 mg, 0.02 mmol), and KBr (71.4 mg, 0.60 mmol) in H_2O (5 mL) were added 48% HBr (45.5 μ L, 0.40 mmol)

and 30% H_2O_2 (40.8 µL, 0.40 mmol). The resulting mixture was stirred under Ar at room temperature for 24 h. The mixture was diluted with chloroform and water, washed with 1 N HCl solution and brine, and dried over Na₂SO₄. The formation of the products was detected by ¹H NMR. Spectral data of the products were identical with those of commercially available and authentic samples.

5. α, α -Dibromoketone might be produced by further bromination of the bromo vinyl alcohol.